A general Choquet?Deny theorem for nilpotent groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Torus Theorem for Homotopy Nilpotent Groups

Nilpotency for discrete groups can be defined in terms of central extensions. In this paper, the analogous definition for spaces is stated in terms of principal fibrations having infinite loop spaces as fibers, yielding a new invariant we compare with classical cocategory, but also with the more recent notion of homotopy nilpotency introduced by Biedermann and Dwyer. This allows us to character...

متن کامل

A Paley-Wiener Like Theorem for Nilpotent Lie Groups

A version of Paley-Wiener like theorem for connected, simply connected nilpotent Lie groups is proven.

متن کامل

A Krengel-type theorem for finitely generated nilpotent groups

has density one in Z with respect to some sequence of intervals Ik = [ak, bk] with bk−ak → ∞. (This means that d{Ik}(S) = lim k→∞ |S∩Ik| bk−ak+1 = 1.) A vector f ∈ H is called weakly wandering if there is an infinite set S ⊆ Z such that for any n,m ∈ S, n 6= m, one has 〈Uf, Uf〉 = 0. The following theorem due to U. Krengel gives a characterization of weak mixing in terms of weakly wandering vect...

متن کامل

On Freiman’s Theorem in Nilpotent Groups

We generalize a result of Tao which extends Freiman’s theorem to the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.

متن کامل

1 BEURLING’S THEOREM AND L p − L q MORGAN’S THEOREM FOR STEP TWO NILPOTENT LIE GROUPS

We prove Beurling's theorem and L p − L q Morgan's theorem for step two nilpotent Lie groups. These two theorems together imply a group of uncertainty theorems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l?Institut Henri Poincare (B) Probability and Statistics

سال: 2004

ISSN: 0246-0203

DOI: 10.1016/s0246-0203(04)00024-x